МОДИФИКАЦИИ МОЧЕВИНОФОРМАЛЬДЕГИДНОЙ СМОЛЫ С РЕАКЦИОННОСПОСОБНЫМИ СОЕДИНЕНИЯМИ

С.С. Негматов¹, К.С. Негматова¹, М.Э. Икрамова¹, Ш.Н. Жалилов², С.И. Назаров², Э.Д. Ниёзов², Г.К. Ширинов², Н.И. Назаров², Б.Б. Бахромов², Н.Ф. Расулова²

 $1 - \Gamma$ осударственное унитарное предприятие «Фан ва тараккиёт»,

2 – Бухарский государственный университет

E-mail: m.ikramova1974@mail.ru

Аннотация. В статье рассматривается модификация мочевиноформальдегидной смолы с реакционноспособным соединением - хлористым бензилом и проведены ИКспектроскопические исследование. Разработан оптимальные условия модификации мочевиноформальдегидной смолы и ее применения в производстве древеснопластиковых композиционных плитных материалов строительного назначения.

Ключиевые слова: модификация, композиция, мочевиноформальдегидная смола, клей, реакционноспособные соединения, древесно-пластиковые плитные материалы, полимер, связующий.

MODIFICATIONS OF UREA-FORMALDEHYDE RESIN WITH REACTIVE COMPOUNDS

S.S.Negmatov¹, K.S.Negmatova¹, M.E.Ikramova¹, Sh.N.Zhalilov², S.I.Nazarov², E.D.Niyozov², G.K.Shirinov², N.I.Nazarov², B.B.Bahromov², N.F.Rasulova²

1 – State unitary enterprise "Science and development",

2 – Bukhara State University

E-mail: m.ikramova1974@mail.ru

Abstract. The article discusses the modification of urea-formaldehyde resin with a reactive compound - benzyl chloride and carried out IR spectroscopic studies. Optimal conditions for the modification of urea-formaldehyde resin and its use in the production of wood-plastic composite board materials for building purposes have been developed.

Keywords: modification, composition, urea-formaldehyde resin, glue, reactive compounds, wood-plastic board materials, polymer, binder.

Введение. Известно, что клей на основе фенолоформальдегидной смолы привозятся, в основном, из других стран за инвалюту. В тоже время, клей на основе фенолформальдегидной смолы дорогостоящий и ядовитый. Поэтому проблема разработки оптимальных составов композиционного полимерного связующего - клея на

основе мочевиноформальдегидной смолы с различными реакционноспособными соединениями на основе местного сырья (заменителя фенолоформальдегидной смолы) является одним из перспективных направлений.

Поэтому целью данной работы является исследование модификации мочевиноформальдегидной смолы с реакционноспособными соединениями.

Анализ литературы и методы. Развитие промышленных производств, древесно-пластиковых плитных материалов в мире занимают одной из основных положений. Ценные свойства древесно-пластиковых материалов и плит, такие как однородность микроструктуры и свойств в различных направлениях по объему и плоскости, сравнительно небольшие изменения размеров в условиях пергаментной влажности дает широкую возможность для их производства. Сравнительно легкая технологичность, получения изделий различной конфигурации, формы деталей и листовых материалов больших форматов, а также возможность использования для них доступных полимерных связующих и материалов, необходимых для выпуска материалов - древесно-пластиковых плит, которые способствуют более широкому использованию стеблей однолетних растений [1-2].

В нашей республике ежегодно потребляется более 300 тыс. м3 композиционных древесно-пластиковых материалов и плит. Из них почти 250 тыс. м3 привозятся из-за рубежа [3].

Из-за ограниченности лесных ресурсов, как в Узбекистане, так и в других странах, появилась тенденция использовать в качестве сырья сельскохозяйственные отходы или стебли различных однолетних растений: стебли льняной и конопляной костры, луба, стебли хлопчатника, риса, лузги подсолнуха, шелухи кофе, земляных орехов, кокосовых пальм, стеблей бамбука для изготовления древесно-пластиковых плитных материалов. Для производства древесно-пластиковых плитных материалов из них требуется большое количество термоустойчивых связующих.

Наряду с другими термореактивными, конденсационными связующими - клеями, композиционные связующие на основе мочевиноформальдегидной смолы являются наиболее дешевым и доступным продуктом, обладающим способностью к быстрому отверждению в присутствии катализаторов - отвердителей, а также сравнительно высокой концентрацией при пониженной вязкости, которая обеспечивает низкую усадку в процессе прессования композиционных древесно-пластиковых плитных материалов [4].

Несмотря на большое количество публикаций по мочевиноформальдегидным олигомерам в литературе отсутствуют данные по степени полимеризации этих олигомеров и методикам ее определения, также отсутствуют данные, которые связывали соотношение исходных компонентов и наличие функциональных групп в полимерной матрице. Поэтому проведение исследований по изучению зависимости степени полимеризации от соотношения исходных компонентов и содержание функциональных групп в мочевиноформальдегидном олигомере для улучшения физико-механических и эксплуатационных свойств композиционных полимерных

связующих является актуальным [5-6].

В качестве объекта исследования были выбраны наполнители из стеблей хлопчатника, мочевиноформальдегидная смола марки КФ-МТ (содержащих 0,2-0,3% водного формальдегида), бензилхлорид и композиционные древесно-пластиковые плитные материалы.

В процессе исследований были использованы современные методы физико-химического анализа, в том числе ИК-спектроскопия, дифференциально-термический анализ, оптический микроскоп, а также другие стандартные методы анализа.

Мочевиноформальдегидные смолы (МФС) представляют собой смесь линейных, разветвленных олигомерных и полимерных молекул, полученных путем поликонденсации мочевины с модификаторами [7].

Результаты и их обсуждение. Для улучшения физико-химических, механических и технологических свойств, древесно-стружечных композиционных плитных материалов на основе мочевиноформальдегидных смол (МФС), нами проведено модификация мочевиноформальдегидной смолы с различными модификаторами. В данной работе исследована модификация МФС с хлористым бензилом. Процесс модификации МФС с исследуемым модификатором довольно сложен за счет полифункциональности мочевины и модификатора, а также реакций поликонденсации.

Механизм модификации МФС с хлористым бензилом сопровождается с образованием низкомолекулярного вещества HCl, так как происходит реакция поликонденсация, которого можно представить в следующем виде:

Так как МФС имеет активного водорода в составе функциональных групп (гидроксильной и аминной группах) модификация МФС с хлористым бензилом может протекать с обоими водородами находящихся в функциональных группах.

На рисунке 1 приведен ИК-спектр мочевиноформальдегидной смолы, модифицированный с хлористым бензилом.

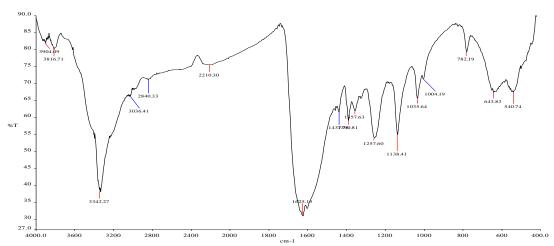


Рис. 1. ИК - спектр мочевиноформальдегидной смолы, модифицированный с хлористым бензилом

Как видно из рисунка, при модификации мочевиноформальдегидной смолы с хлористым бензилом происходит сглаживание и уменьшение пиков в областях 3342, 3036, 1625, 1437, 1357, 1257, 1138, 1035, 782, 643, 540 см⁻¹. Появление узкого и интенсивного пика в области 1625 см⁻¹ говорит о существование ароматического бензольного кольца.

Для сравнительного анализа модифицированной мочевиноформальдегидной смолы были сняты ИК-спектр исходной мочевиноформальдегидной смолы. Для этого использовали спектрометр IRTracer -100 "SHIMADZU" в диапазоне инфракрасного (ИК) излучения, длина спектра 400-4000 см⁻¹, (разрешение -4 см⁻¹, чувствительность, отношение сигнал/шум -60,000:1; скорость сканирования -20 спектров в секунду) и анализ проводили на прессованной таблетке KBr.

На рисунке 2 приведен ИК-спектр мочевиноформальдегидной смолы. По полученным данным, который показывает ИК-спектр видно, что в составе мочевиноформальдегидной смолы имеются NH-группа вторичного амина в области 1627 см⁻¹, имеет частоты валентного поглощения –СО-NH₂, -ОН групп в области 3338,5 см⁻¹. В области 1358, 1391 см⁻¹ имеют частоты колебаний, принадлежащие группе –С-СН₃, 1439 см⁻¹ имеют частоты колебаний, принадлежащие группе -СH₂-, 1139, 1033 см⁻¹ имеют частоты колебаний, принадлежащие группе –С=О. Было отмечено, что поля 553, 635, 782 см⁻¹ относятся к частотам внеплоскостным деформационным колебаниям С-Н групп.

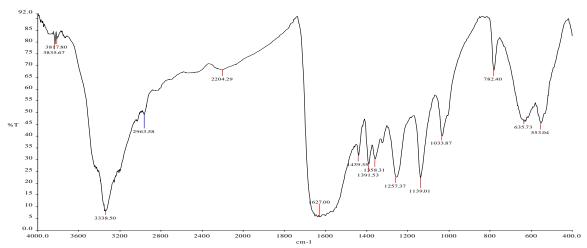


Рис. 2. ИК-спектр мочевиноформальдегидной смолы

Все продукты реакции содержат группу –N-СНR- в комбинации с другими заместителями. Механизм этих реакций зависит от рН среды, физической формы используемых компонентов и природы катализаторов.

Заключение. Таким образом, исследован механизм взаимодействия мочевиноформальдегидных смол с модифицирующим реакционноспособным соединением - хлористым бензилом, в результате которого было выявлено образование сополимеров и низкомолекулярного вещества за счет образования ковалентных связей между молекулами в реакциях поликонденсации.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

- 1. Суровцева Л.С. Технология и оборудование производства композиционных древесных материалов. // Учебник для вузов. Издательство Архангельского гос. техн. ун-та, $2001.-210~{\rm c}$
- 2. Гребенникова А.В. Материаловедение в производстве древесных плит и пластиков // Учебник для техникумов.- М:. Лесн. пром-сть. 1988. 250 с.
- 3. Дроздов И.Я., Кунин В.М. Производство древесноволокнистых плит //Учебник для подготовки рабочих на производстве. М. Высшая школа. 1975. 328 с.
- 4. Мадрахимов А.М., Жалилов Ш.Н., Абед Н.С., Негматова К.С., Негматов С.С., Холмуродова Д.К., Бойдадаев М.Б. Исследование состава, физико-механических характеристик стеблей хлопчатника для получения древесно-пластиковых плитных материалов. // Композиционные материалы. Ташкент, 2021, №4, С. 173-175.
- 5. Ш.Н. Жалилов. Состояние получения и исследования структуры мочевиноформальдегидной смолы // Композиционные материалы, №1, 2022, С. 232-234.

- 6. Ш.Н. Жалилов, К.С. Негматова, Д.Н. Ходжаева, Н.С. Абед, Д.К. Холмуродова, М.Б. Бойдадаев, А.М. Мадрахимов. Изучение и анализ существующих полимерных связующих, применяемых в производстве древесно-стружечных и древесно-пластиковых плитных материалов, и их недостатки // Композиционные материалы №1, 2022, С. 226-228.
- 7. К.С. Негматова, Ш.Н. Жалилов, Р.Х. Пирматов, С.С. Негматов, Н.С. Абед, Д.К. Холмурадова. Исследование процесса отверждения модифицированной с реакционноспособными соединениями мочевиноформальдегидной смолы и определение их оптимальных режимов отверждения // Композиционные материалы, №1, 2022, С. 143-147.