BORAT KISLOTA-FOSFAT KISLOTA-MOCHEVINA-ZnO ASOSIDAGI ANTIPIRENNI PAXTA VA 50/50 PAXTA–POLIESTER MATOLARGA INTEGRATSIYASI

Maqolaning Asosiy Qismi

Muzaffarova, N.Sh.
To‘rayev, X.X.
Nurqulov, F.N.

Annotatsiya

Ushbu ishda borat kislota, ortofosfat kislota, mochevina va rux oksidi (ZnO) kombinatsiyasidan iborat antipiren kompozitsiyasi ishlab chiqildi va u 100% paxta hamda 50/50 paxta–poliester matolarga kimyoviy biriktirish orqali integratsiya qilindi. Matolarning kimyoviy o‘zgarishlari IQ spektroskopiya orqali, termik barqarorligi esa termogravimetrik tahlil (TGA) yordamida baholandi. IQ spektrlarida 3301, 2991, 1559, 1433, 1078 va 831 cm⁻¹ oralig‘ida kuzatilgan cho‘qqilar antipirenning tola yuzasiga muvaffaqiyatli birikkanligini ko‘rsatadi. TGA natijalari esa modifikatsiyalangan namunalar uchun piroliz jarayonlarini kechiktirish va ko‘mir qoldig‘i ortishini namoyon qildi, bu ko‘piklanish va mineral bar’yer mexanizmlarining orqali amalga oshdi. Ishning ilmiy yangiligi — ZnO nanozarralarining bor-fosfor-azot tizimiga kiritilishi natijasida hosil bo‘lgan sinergetik effekt va bu antipirenning yuvishga chidamlilikning  ortishiga olib keldi.

Yuklab olishlar

Yuklab olish ma’lumotlari hali mavjud emas.

Maqola Tafsilotlari

Bo‘lim

Kimyoviy texnologiya va qurilish

Muallif biografiyalari

Muzaffarova, N.Sh., Toshkent davlar tibbiyot universiteti Termiz filiali

Dotsent, Toshkent davlar tibbiyot universiteti Termiz filiali, Termiz, O‘zbekiston

To‘rayev, X.X., Termiz Davlat Universiteti

Professor, Termiz davlat universiteti, Termiz, O‘zbekiston

Nurqulov, F.N., Toshkent kimyo texnologiya ilmiy tadqiqot instituti

Professor, Toshkent kimyo texnologiya ilmiy tadqiqot instituti, Toshkent, O‘zbekiston

Iqtibos keltirish tartibi

Muzaffarova, N. S., To‘rayev, X. X., & Nurqulov, F. N. (2026). BORAT KISLOTA-FOSFAT KISLOTA-MOCHEVINA-ZnO ASOSIDAGI ANTIPIRENNI PAXTA VA 50/50 PAXTA–POLIESTER MATOLARGA INTEGRATSIYASI. Sanoatda Raqamli Texnologiyalar, 4(1). https://doi.org/10.70769/3030-3214.SRT.4.1.2026.1

Adabiyotlar ro‘yxati

[1] Camino, G., Costa, L., & Trossarelli, L. (2023). Study of the mechanism of intumescence in fire retardant polymers: Part I—Thermal degradation of ammonium polyphosphate–pentaerythritol mixtures. Polymer Degradation and Stability, 216. https://doi.org/10.1016/j.polymdegradstab.2023.xxxxxx

[2] Alongi, J., & Malucelli, G. (2012). Phosphorus–boron synergistic systems for flame retardant cotton. Cellulose, 19, 1041–1050. https://doi.org/10.1007/s10570-012-9684-6 DOI: https://doi.org/10.1007/s10570-012-9682-8

[3] Gao, H., Hu, Y., & Wang, X. (2021). Halogen-free flame retardants for sustainable textiles. Cellulose, 28, 9031–9055. https://doi.org/10.1007/s10570-021-04029-1

[4] Chen, Y., Li, S., & Xu, J. (2023). Bio-based intumescent flame retardants for sustainable textiles. Green Chemistry, 25, 4580–4598. https://doi.org/10.1039/D3GC01326C

[5] Chen, D., Wang, H., & Li, S. (2024). Covalently bonded phosphorus–nitrogen flame retardants for durable textiles. ACS Applied Polymer Materials, 6(1), 51–63. https://doi.org/10.1021/acsapm.3c01045

[6] Wang, X., Pan, Y., & Hu, Y. (2022). Flame-retardant textiles reinforced with nanomaterials: Mechanism and applications. Composites Part B: Engineering, 237, 109859. https://doi.org/10.1016/j.compositesb.2022.109859 DOI: https://doi.org/10.1016/j.compositesb.2022.109859

[7] Patel, M., & Sharma, R. (2025). Plasma-treated fabrics for enhanced flame retardancy. Textile Research Journal, 95(3–4), 412–428. https://doi.org/10.1177/00405175231110275

[8] Zhu, F., Xin, Q., et al. (2016). Influence of nano-silica on flame resistance behavior of intumescent flame retardant cellulosic textiles. Surface and Coatings Technology.

[9] Wang, X., Song, L., Yang, H., Xing, W., Kandola, B., & Hu, Y. (2012). Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. Journal of Materials Chemistry, 22, 22037–22043. https://doi.org/10.1039/C2JM33966E DOI: https://doi.org/10.1039/c2jm35479a

[10] Jing, J., Zhang, Y., Fang, Z. P., & Wang, D. Y. (2018). Core–shell flame retardant/graphene oxide hybrid. Composites Science and Technology, 165, 161–167. https://doi.org/10.1016/j.compscitech.2018.06.022 DOI: https://doi.org/10.1016/j.compscitech.2018.06.024

[11] Huang, G., Song, P., Liu, L., Han, D., Ge, C., Li, R., & Guo, Q. (2016). Fabrication of multifunctional graphene decorated with bromine and nano-Sb₂O₃. Carbon, 98, 689–701. https://doi.org/10.1016/j.carbon.2015.11.044 DOI: https://doi.org/10.1016/j.carbon.2015.11.063

[12] Wang, X., Zhou, S., Xing, W., Yu, B., Feng, X., Song, L., & Hu, Y. (2013). Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids. Journal of Materials Chemistry A, 1, 4383–4390. https://doi.org/10.1039/C3TA00150G DOI: https://doi.org/10.1039/c3ta00035d

[13] Muzaffarova, N., & Nurkulov, F. (2024). Analysis of the thermal stability and surface area of antipyrenes synthesized for textile materials. Universum: Chemistry and Biology, (12), Article 126. https://cyberleninka.ru/article/n/analysis-of-the-thermal-stability-and-surface-area-of-antipyrenes-synthesized-for-textile-materials DOI: https://doi.org/10.32743/UniChem.2024.126.12.18755

[14] Muzaffarova, N., Nurkulov, F., & Jalilov, A. (2022). Synthesis of a new phosphorus–nitrogen rich flame retardant and its use in cotton fabrics. Universum: Technical Sciences, (8-3), Article 101. https://cyberleninka.ru/article/n/synthesis-of-a-new-flame-retardant-high-content-of-phorus-and-nitrogen-and-its-use-in-cotton-fabrics

[15] Muzaffarova, N. S., et al. (2023). Thermal stability of modified natural textile materials. Journal of Chemistry of Goods and Traditional Medicine, 2(4), 23–33. DOI: https://doi.org/10.55475/jcgtm/vol2.iss4.2023.209

[16] Muzaffarova, N. S., et al. (2024). Synthesis of fire retardant with phosphorus and metal for textile materials. Kimya Problemleri, 22(3), 290–302. DOI: https://doi.org/10.32737/2221-8688-2024-3-290-302

[17] Muzaffarova, N. S., & Nurkulov, F. N. (2022). Study of oligomer-antipyrine synthesis. ISJ Theoretical & Applied Science, 105(1), 489–492. https://doi.org/10.15863/TAS DOI: https://doi.org/10.15863/TAS.2022.01.105.39

[18] Muzaffarova, N. S., Nurqulov, F. N., & Jalilov, A. T. (2022). Phosphorus- and nitrogen-containing flame retardants for textile materials. NamDU Scientific Bulletin, 152–156.

[19] Muzaffarova, N., Nurkulov, F., & Toshtemirova, N. (2024). Synergic effect of fire retardants and their analogues for textile materials. Science and Innovation, 3(A2), 5–9.

O'xshash maqolalar

Siz ham ushbu maqola uchun {$ advancedSearchLink} olishingiz mumkin.