NATRIY-OLTINGUGURTLI BATAREYALAR “SHUTTLE” EFFEKTINI KAMAYTIRUVCHI SOPOLIMERLI GELSIMON ELEKTROLIT SINTEZI
Main Article Content
Annotatsiya
Plastifikatsiyalangan akrilonitril (AN)-metil akrilat (MA) sopolimerlari asosidagi gel polimer elektrolitdan samarali natriy-oltingugurt batareyalari (Na-SB) uchun istiqbolli yechim sifatida taklif etilgan. Ushbu ishda, AN-MA sopolimer tarkibi va suyuq elektrolit miqdori optimallashtirilgan holda, ichki qarshiligi 1Omgacha bo‘lgan polimer elektrolitlar ishlab chiqilgan. Bu elektrolitlar natriy elektrodlarining yuzasiga “shuttle” effekti ta’sirida oqib o‘tuvchi oltingugurtni sezilarli darajada kamaytirib, elektrokimyoviy barqarorlikni oshirgan. Skanerli elektron mikroskopiya (SEM) va energiya dispersiv rentgen spektroskopiyasi (EDS) yordamida sopolimer va gel elektrolitning sirt tasviri va elementar tahlili amalga oshirildi. Gel elektrolit tarkibidagi suyuq elektrolitning ortishi bilan yuzaning tekislanishi (amorflanishi) ko‘rsatildi. Gel elektrolitda ortiqcha yoki kam suyuq elektrolitning bo‘lishi “shuttle” effektini oshib ketishiga sabab bo‘lishi aniqlandi.
Downloads
Article Details
Soni
Bo'lim

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ommaviy Litsenziya Shartlari
(Ochiq jurnal tizimlari (OJS) uchun)
O‘zbekiston Respublikasi qonunchiligiga muvofiq quyidagi shartlar taqdim etiladi:
-
Mualliflik huquqi:
Chop etilgan maqolaning mualliflik huquqi muallif(lar)ga tegishli bo‘lib qoladi. Shu bilan birga, maqola OJS platformasida chop etilgandan so‘ng, uning kontenti Creative Commons (CC BY) litsenziyasi asosida tarqatiladi. -
Litsenziya turi:
Ushbu maqola Creative Commons Attribution 4.0 International (CC BY 4.0) litsenziyasi asosida tarqatiladi. Bu shuni anglatadiki, foydalanuvchilar ushbu maqolani quyidagi shartlarda qayta ishlatishlari, bo‘lishishlari va qayta ishlashlari mumkin:- Nusxa ko‘chirish va tarqatish: Maqola matni yoki uning qismlari nusxasi erkin tarqatilishi mumkin.
- Iqtibos keltirish va tahlil qilish: Maqoladan qismlar iqtibos sifatida foydalanilishi mumkin.
- Erkin foydalanish: Tadqiqot va o‘quv jarayonlari uchun maqoladan erkin foydalanish huquqi mavjud.
- Muallifga havola qilish: Foydalanuvchilar maqola muallifini to‘g‘ri ko‘rsatishi va asl manbaga havola berishi lozim.
-
Kommersiyaviy foydalanish:
Ushbu maqoladan tijorat maqsadlarida foydalanishga ruxsat beriladi, ammo mualliflik va manbaga havola majburiy hisoblanadi. -
Hujjatni o‘zgartirish:
Maqolaning matni yoki mazmunini o‘zgartirish, uni qayta ishlash mumkin, lekin har qanday o‘zgarishlar mualliflikka salbiy ta’sir ko‘rsatmasligi kerak. -
Mas’uliyat cheklovi:
Muallif(lar) maqola tarkibidagi ma’lumotlarning to‘g‘riligiga javobgar bo‘lib, platforma tahririyati mazkur ma’lumotlardan foydalanish natijasida kelib chiqadigan har qanday zarar uchun javobgarlikni o‘z zimmasiga olmaydi. -
Ommaviy foydalanish majburiyatlari:
Ushbu maqola mazmuni faqat qonuniy va axloqiy talablar asosida ishlatilishi kerak. Noqonuniy foydalanish qat’iyan man etiladi.
Izoh:
Mazkur litsenziya shartlari mualliflar va foydalanuvchilar o‘rtasida ochiq va shaffof foydalanishni ta’minlashga qaratilgan. Bu shartlarni qabul qilish orqali, siz maqola mazmunini Creative Commons litsenziyasiga muvofiq qayta ishlash va tarqatishga rozilik bildirasiz.
Havola: Creative Commons Attribution 4.0 International (CC BY 4.0)
How to Cite
References
1. Juraev , N., Mukhtorov , N., & Khakimov , F. (2024). ADVANCEMENTS IN TECHNOLOGIES FOR AIR POLLUTION MITIGATION. Академические исследования в современной науке, 3(41), 174–180. Retrieved from https://inlibrary.uz/index.php/arims/article/view/49744
2. Khakimov F. S., Mukhtorov N. S., Maksumova O. S. Environmentally friendly synthesis route of terpolymers derived from alkyl acrylates and their performance as additives for liquid hydrocarbon products //Journal of Polymer Research. – 2020. – Т. 27. – №. 10. – С. 304. DOI: https://doi.org/10.1007/s10965-020-02268-1
3. Farrukh K., Shakhnozakhon K., Oytura M. TECHNOLOGICAL REVIEW FOR USING POLYACRYLIC MEMBRANES IN FLUE GAS UTILIZATION //Universum: технические науки. – 2021. – №. 10-5 (91). – С. 59-64. DOI: https://doi.org/10.32743/UniTech.2021.91.10.12346
4. Хакимов Ф. Ш. и др. СОЗДАНИЕ БЕЗОТХОДНЫХ И ЭНЕРГОЭФФЕКТИВНЫХ ТЕХНОЛОГИЙ В ПРОЦЕССЕ ПЕРВИЧНОЙ ПЕРЕРАБОТКИ НЕФТИ (ЛИТЕРАТУРНЫЙ ОБЗОР) //Кислород. – Т. 2. – №. 209,460. – С. 20.946.
5. Khakimov F., Khamdamova S. S. LOCAL ELECTROLYTE FROM DEFOLIANT-DESICCANT //Education. – 2017. – Т. 2017.
6. Xakimov F.Sh., O.Z.Turg‘unov, Sh.Sh.Xamdamva, O.S. Maksumova, Suv qattiqligining batareya qayta zaryadlanishiga ta'siri, Химическая технология и экология, Scientific-technical journal (STJ FerPI, ФарПИ ИТЖ, НТЖ ФерПИ, 2023,Т.27. спец.выпуск №16, -b. 192-196. DOI: https://doi.org/10.48077/scihor12.2024.192
7. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (3) (2010) 587–603, https://doi.org/10.1021/cm901452z DOI: https://doi.org/10.1021/cm901452z
8. A. Manthiram, Y.Z. Fu, Y.S. Su, Challenges and prospects of lithium-sulfur batteries, Accounts Chem. Res. 46 (5) (2013) 1125–1134, https://doi.org/10.1021/ar300179v DOI: https://doi.org/10.1021/ar300179v
9. R.P. Fang, S.Y. Zhao, Z.H. Sun, W. Wang, H.M. Cheng, F. Li, More reliable lithiumsulfur batteries: status, solutions and prospects, Adv. Mater. 29 (48) (2017) 25, https://doi.org/10.1002/adma.201606823 DOI: https://doi.org/10.1002/adma.201606823
10. L.L. Fan, N.P. Deng, J. Yan, Z.H. Li, W.M. Kang, B.W. Cheng, The recent research status quo and the prospect of electrolytes for lithium sulfur batteries, Chem. Eng. J. 369 (2019) 874–897, https://doi.org/10.1016/j.cej.2019.03.145 DOI: https://doi.org/10.1016/j.cej.2019.03.145
11. Y.B. He, Z. Chang, S.C. Wu, H.S. Zhou, Effective strategies for long-cycle life lithium-sulfur batteries, J. Mater. Chem. A 6 (15) (2018) 6155–6182, https://doi.org/10.1039/c8ta01115j DOI: https://doi.org/10.1039/C8TA01115J
12. X. Zhu, Y. Ouyang, J. Chen, X. Zhu, X. Luo, F. Lai, H. Zhang, Y.-E. Miao, T. Liu, In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium–sulfur batteries, J. Mater. Chem. A 7 (7) (2019) 3253–3263, https://doi.org/10.1039/C8TA11397A DOI: https://doi.org/10.1039/C8TA11397A
13. X. Luo, X. Lu, G. Zhou, X. Zhao, Y. Ouyang, X. Zhu, Y.-E. Miao, T. Liu, Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium–sulfur batteries, ACS Appl. Mater. Interfaces 10 (49) (2018) 42198–42206, https://doi.org/10.1021/acsami.8b10795 DOI: https://doi.org/10.1021/acsami.8b10795
14. J. Yu et al., Dense and thin coating of gel polymer electrolyte on sulfur cathode toward high performance Li-sulfur battery, Composites Communications 19 (2020) 239–245, https://doi.org/10.1016/j.coco.2020.04.015 DOI: https://doi.org/10.1016/j.coco.2020.04.015
15. F.Sh. Xakimov, Sh.Sh. Xamdamova, O.S Maksumova, S.R. Mirsalimova, Neft-gazni qayta ishlash korxonalaridan chiqayotgan oltingugurt-ishqoriy kanalizatsiya suvini tozalash, O‘ZBEKISTON NEFT VA GAZ ILMIY-TEXNIKA JURNALI, 1/2025, 78-96
16. https://batteryuniversity.com/article/how-does-internal-resistance-affect-performance
17. https://learn.sparkfun.com/tutorials/measuring-internal-resistance-of-batteries/internal-resistance
18. Poutnik (https://physics.stackexchange.com/users/97690/poutnik), Inverse relationship between salinity and conductivity?, URL (version: 2023-10-03): https://physics.stackexchange.com/q/782911
19. O.V. Lonchakova, O.A. Semenikhin, et al., Electrochimica Acta, Volume 334, 135512, ISSN 0013-4686. (2020) https://doi.org/10.1016/j.electacta.2019.135512 DOI: https://doi.org/10.1016/j.electacta.2019.135512
20. K. Vijaya Kumar et al /Int.J. ChemTech Res.2014,6(13),pp 5214-5219.