NATRIY-OLTINGUGURTLI BATAREYALAR “SHUTTLE” EFFEKTINI KAMAYTIRUVCHI SOPOLIMERLI GELSIMON ELEKTROLIT SINTEZI

Main Article Content

Xakimov, F.Sh.
Jalolov, J.M.
Xamdamova, Sh.Sh.
Maksumova, O.S.

Annotatsiya

Plastifikatsiyalangan akrilonitril (AN)-metil akrilat (MA) sopolimerlari asosidagi gel polimer elektrolitdan samarali natriy-oltingugurt batareyalari (Na-SB) uchun istiqbolli yechim sifatida taklif etilgan. Ushbu ishda, AN-MA sopolimer tarkibi va suyuq elektrolit miqdori optimallashtirilgan holda, ichki qarshiligi 1Omgacha bo‘lgan polimer elektrolitlar ishlab chiqilgan. Bu elektrolitlar natriy elektrodlarining yuzasiga “shuttle” effekti ta’sirida oqib o‘tuvchi oltingugurtni sezilarli darajada kamaytirib, elektrokimyoviy barqarorlikni oshirgan. Skanerli elektron mikroskopiya (SEM) va energiya dispersiv rentgen spektroskopiyasi (EDS) yordamida sopolimer va gel elektrolitning sirt tasviri va elementar tahlili amalga oshirildi. Gel elektrolit tarkibidagi suyuq elektrolitning ortishi bilan yuzaning tekislanishi (amorflanishi) ko‘rsatildi. Gel elektrolitda ortiqcha yoki kam suyuq elektrolitning bo‘lishi “shuttle” effektini oshib ketishiga sabab bo‘lishi aniqlandi.

Downloads

Download data is not yet available.

Article Details

Bo'lim

Kimyoviy texnologiya va qurilish

How to Cite

Xakimov , F. S., Jalolov , J. M., Xamdamova , S. S., & Maksumova , O. S. (2025). NATRIY-OLTINGUGURTLI BATAREYALAR “SHUTTLE” EFFEKTINI KAMAYTIRUVCHI SOPOLIMERLI GELSIMON ELEKTROLIT SINTEZI. Sanoatda Raqamli Texnologiyalar, 3(2). https://doi.org/10.70769/3030-3214.SRT.3.2.2025.9

References

1. Juraev , N., Mukhtorov , N., & Khakimov , F. (2024). ADVANCEMENTS IN TECHNOLOGIES FOR AIR POLLUTION MITIGATION. Академические исследования в современной науке, 3(41), 174–180. Retrieved from https://inlibrary.uz/index.php/arims/article/view/49744

2. Khakimov F. S., Mukhtorov N. S., Maksumova O. S. Environmentally friendly synthesis route of terpolymers derived from alkyl acrylates and their performance as additives for liquid hydrocarbon products //Journal of Polymer Research. – 2020. – Т. 27. – №. 10. – С. 304. DOI: https://doi.org/10.1007/s10965-020-02268-1

3. Farrukh K., Shakhnozakhon K., Oytura M. TECHNOLOGICAL REVIEW FOR USING POLYACRYLIC MEMBRANES IN FLUE GAS UTILIZATION //Universum: технические науки. – 2021. – №. 10-5 (91). – С. 59-64. DOI: https://doi.org/10.32743/UniTech.2021.91.10.12346

4. Хакимов Ф. Ш. и др. СОЗДАНИЕ БЕЗОТХОДНЫХ И ЭНЕРГОЭФФЕКТИВНЫХ ТЕХНОЛОГИЙ В ПРОЦЕССЕ ПЕРВИЧНОЙ ПЕРЕРАБОТКИ НЕФТИ (ЛИТЕРАТУРНЫЙ ОБЗОР) //Кислород. – Т. 2. – №. 209,460. – С. 20.946.

5. Khakimov F., Khamdamova S. S. LOCAL ELECTROLYTE FROM DEFOLIANT-DESICCANT //Education. – 2017. – Т. 2017.

6. Xakimov F.Sh., O.Z.Turg‘unov, Sh.Sh.Xamdamva, O.S. Maksumova, Suv qattiqligining batareya qayta zaryadlanishiga ta'siri, Химическая технология и экология, Scientific-technical journal (STJ FerPI, ФарПИ ИТЖ, НТЖ ФерПИ, 2023,Т.27. спец.выпуск №16, -b. 192-196. DOI: https://doi.org/10.48077/scihor12.2024.192

7. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (3) (2010) 587–603, https://doi.org/10.1021/cm901452z DOI: https://doi.org/10.1021/cm901452z

8. A. Manthiram, Y.Z. Fu, Y.S. Su, Challenges and prospects of lithium-sulfur batteries, Accounts Chem. Res. 46 (5) (2013) 1125–1134, https://doi.org/10.1021/ar300179v DOI: https://doi.org/10.1021/ar300179v

9. R.P. Fang, S.Y. Zhao, Z.H. Sun, W. Wang, H.M. Cheng, F. Li, More reliable lithiumsulfur batteries: status, solutions and prospects, Adv. Mater. 29 (48) (2017) 25, https://doi.org/10.1002/adma.201606823 DOI: https://doi.org/10.1002/adma.201606823

10. L.L. Fan, N.P. Deng, J. Yan, Z.H. Li, W.M. Kang, B.W. Cheng, The recent research status quo and the prospect of electrolytes for lithium sulfur batteries, Chem. Eng. J. 369 (2019) 874–897, https://doi.org/10.1016/j.cej.2019.03.145 DOI: https://doi.org/10.1016/j.cej.2019.03.145

11. Y.B. He, Z. Chang, S.C. Wu, H.S. Zhou, Effective strategies for long-cycle life lithium-sulfur batteries, J. Mater. Chem. A 6 (15) (2018) 6155–6182, https://doi.org/10.1039/c8ta01115j DOI: https://doi.org/10.1039/C8TA01115J

12. X. Zhu, Y. Ouyang, J. Chen, X. Zhu, X. Luo, F. Lai, H. Zhang, Y.-E. Miao, T. Liu, In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium–sulfur batteries, J. Mater. Chem. A 7 (7) (2019) 3253–3263, https://doi.org/10.1039/C8TA11397A DOI: https://doi.org/10.1039/C8TA11397A

13. X. Luo, X. Lu, G. Zhou, X. Zhao, Y. Ouyang, X. Zhu, Y.-E. Miao, T. Liu, Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium–sulfur batteries, ACS Appl. Mater. Interfaces 10 (49) (2018) 42198–42206, https://doi.org/10.1021/acsami.8b10795 DOI: https://doi.org/10.1021/acsami.8b10795

14. J. Yu et al., Dense and thin coating of gel polymer electrolyte on sulfur cathode toward high performance Li-sulfur battery, Composites Communications 19 (2020) 239–245, https://doi.org/10.1016/j.coco.2020.04.015 DOI: https://doi.org/10.1016/j.coco.2020.04.015

15. F.Sh. Xakimov, Sh.Sh. Xamdamova, O.S Maksumova, S.R. Mirsalimova, Neft-gazni qayta ishlash korxonalaridan chiqayotgan oltingugurt-ishqoriy kanalizatsiya suvini tozalash, O‘ZBEKISTON NEFT VA GAZ ILMIY-TEXNIKA JURNALI, 1/2025, 78-96

16. https://batteryuniversity.com/article/how-does-internal-resistance-affect-performance

17. https://learn.sparkfun.com/tutorials/measuring-internal-resistance-of-batteries/internal-resistance

18. Poutnik (https://physics.stackexchange.com/users/97690/poutnik), Inverse relationship between salinity and conductivity?, URL (version: 2023-10-03): https://physics.stackexchange.com/q/782911

19. O.V. Lonchakova, O.A. Semenikhin, et al., Electrochimica Acta, Volume 334, 135512, ISSN 0013-4686. (2020) https://doi.org/10.1016/j.electacta.2019.135512 DOI: https://doi.org/10.1016/j.electacta.2019.135512

20. K. Vijaya Kumar et al /Int.J. ChemTech Res.2014,6(13),pp 5214-5219.

O'xshash maqolalar

Siz ham ushbu maqola uchun {$ advancedSearchLink} olishingiz mumkin.