THE IMPORTANCE OF THE MINERAL COMPOSITION OF OXIDIZED COPPER ORE IN THE SELECTION OF PROCESSING TECHNOLOGY
Main Article Content
Abstract
The growing demand for copper and the depletion of easily processable sulfide copper ore reserves necessitate the processing of oxidized, compositionally mixed, and off-balance copper ores to extract valuable components. However, the complex mineralogical composition of oxidized copper ores and their hydrophilic properties present challenges in processing. This article analyzes the physicochemical properties of copper minerals contained in oxidized ores, their importance in selecting appropriate processing technologies, potential reagents for improving flotation performance, and hydrometallurgical processing methods.
Downloads
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
Public License Terms
(For Open Journal Systems (OJS))
-
Copyright:
The copyright of the published article remains with the author(s). However, after publication, the article is distributed on the OJS platform under the Creative Commons (CC BY) license. -
License Type:
This article is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. This means users can utilize the article under the following conditions:- Copy and distribute: The text of the article or its parts can be freely distributed.
- Quote and analyze: Parts of the article can be used for quoting and analysis.
- Free use: The article can be freely used for research and educational purposes.
- Attribution: Users must provide proper attribution and reference to the original source.
-
Commercial use:
The article can be used for commercial purposes, provided that authorship and source are properly cited. -
Document modification:
The text or content of the article can be modified or adapted, as long as it does not harm the authorship. -
Liability disclaimer:
The author(s) are responsible for the accuracy of the information contained in the article. The editorial team of the platform is not liable for any damages resulting from the use of this information. -
Public usage obligations:
The content of the article must be used only in accordance with legal and ethical standards. Unauthorized use is strictly prohibited.
Note:
These license terms are designed to ensure transparency and openness in material usage. By accepting these terms, you agree to the adaptation and distribution of the article content under the terms of the Creative Commons license.
Link: Creative Commons Attribution 4.0 International (CC BY 4.0)
How to Cite
References
1. International Copper Study Group. (2024). The world copper factbook 2024 (pp. 5–6).
2. London Metal Exchange. (n.d.). LME Copper. Retrieved from https://www.lme.com/en/Metals/Non-ferrous/LME-Copper#Summary
3. Yagudin, R. A., Yagudina, Yu. R., & Emelyanenko, E. A. (2014). Mis-kolchedan rudalarini qayta ishlashning texnologik yechimlari. Gornyi Zhurnal, (7), 30–33. https://www.rudmet.ru/journal/1330/article/22746/
4. Ryl’nikova, M. V., Emelyanenko, E. A., Gorbatova, E. A., & Yagudina, Yu. R. (2016). Uraldagi mis-kolchedan konlari rudalarini qayta ishlash texnologiyasini takomillashtirish. Gornyi Zhurnal, (12). https://doi.org/10.17580/gzh.2016.12.14 DOI: https://doi.org/10.17580/gzh.2016.12.14
5. Boduen, A. Ya. (2023). Past navli va sifatsiz mis konsentratlarini qayta ishlashning gidrometallurgik usullari. Gornyi Zhurnal, (10). https://doi.org/10.17580/gzh.2023.10.05 DOI: https://doi.org/10.17580/gzh.2023.10.05
6. Gu, G., Zhu, R., & Chen, Z. (2019). Structural modification of cellulose to enhance the flotation efficiency of fine copper oxide ore. Physicochemical Problems of Mineral Processing, 55(1), 58–69.
7. Emmanuel, B., Ajayi, J. A., & Makhatha, E. (2019). Investigation of copper recovery rate from copper oxide ore occurring as coarse grains locked in a porphyritic fine grain alumina and silica. Energy Procedia, 157, 972–976. DOI: https://doi.org/10.1016/j.egypro.2018.11.264
8. Mitrofanov, S. I., Meshaninova, V. I., Kurochkina, A. V., Maiorov, A. D., & Shcherbakov, V. A. (1984). Kombinirovannye protsessy pererabotki rud tsvetnykh metallov. Moskva: Nedra.
9. Sanakulov, K. S. (2009). Perspektivy pererabotki okislennykh mednykh rud mestorozhdeniya Kal’makyr. Gornyi Vestnik Uzbekistana, (3), 47–49.
10. Elchiyeva, M. D., Xoliqulov, D. B., & Boltayev, O. N. (2024). “Olmaliq KMK” AJ sharoitida oksidlangan mis rudalarini qayta ishlash imkoniyatlari. International Journal of Advanced Technology and Natural Sciences. https://doi.org/10.24412/2181-144X-2024-1-80-87
11. Mao, Y. B., Deng, J. S., Wen, S. M., & Fang, J. J. (2015). Reaction kinetics of malachite in ammonium carbamate solution. Chemical Papers, 69(9), 1187–1192. DOI: https://doi.org/10.1515/chempap-2015-0128
12. Horlick, J. M., Cooper, W. C., & Clark, A. H. (1981). Aspects of the mineralogy and hydrometallurgy of chrysocolla, with special reference to the Cuajone, Peru, ores. International Journal of Mineral Processing, 8(1), 49–59. DOI: https://doi.org/10.1016/0301-7516(81)90006-5
13. Habbache, N., Alane, N., Djerad, S., & Tifouti, L. (2009). Leaching of copper oxide with different acid solutions. Chemical Engineering Journal, 152(2–3), 503–508. DOI: https://doi.org/10.1016/j.cej.2009.05.020
14. Zhang, Q., Wen, S. M., Feng, Q. C., & Wang, H. (2022). Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation. International Journal of Minerals, Metallurgy and Materials, 29(6), 1150–1160. DOI: https://doi.org/10.1007/s12613-021-2379-y
15. Baranov, V. F. (2020). Sulfidli va aralash tarkibli mis rudalarini qayta ishlovchi xorijiy boyitish fabrikalarining ish tajribasini ko‘rib chiqish. Obogashchenie Rud, (3). https://doi.org/10.17580/or.2020.03.08 DOI: https://doi.org/10.17580/or.2020.03.08
16. Kongolo, K., Kipoka, M., Minanga, K., & Mpoyo, M. (2003). Improving the efficiency of oxide copper-cobalt ores flotation by combination of sulphidisers. Minerals Engineering, 16(10), 1023–1026.
17. Feng, Q., Yang, W., Wen, S., Wang, H., Zhao, W., & Han, G. (2022). Flotation of copper oxide minerals: A review. International Journal of Mining Science and Technology, 32(6), 1351–1364. https://doi.org/10.1016/j.ijmst.2022.08.008 DOI: https://doi.org/10.1016/j.ijmst.2022.09.011
18. Gu, G., Zhu, R., & Chen, Z. (2019). Structural modification of cellulose to enhance the flotation efficiency of fine copper oxide ore. Physicochemical Problems of Mineral Processing, 55(1), 58–69.
19. Jiang, D., Lan, J., Zhao, W., Zhang, Z., & Lan, Y. (2017). Activation of chrysocolla flotation by organic chelating agents. RSC Advances, 7(57), 35608–35612. DOI: https://doi.org/10.1039/C7RA05239A
20. Kongolo, K., Kipoka, M., Minanga, K., & Mpoyo, M. (2003). Improving the efficiency of oxide copper-cobalt ores flotation by combination of sulphidisers. Minerals Engineering, 16(10), 1023–1026. DOI: https://doi.org/10.1016/S0892-6875(03)00263-2
21. Yang, X. L., Liu, S., Liu, G. Y., & Zhong, H. (2017). A DFT study on the structure–reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors. Journal of Industrial and Engineering Chemistry, 46, 404–415. DOI: https://doi.org/10.1016/j.jiec.2016.11.010
22. Deng, T., & Chen, J. Y. (1991). Treatment of oxidized copper ores with emphasis on refractory ores. Mineral Processing and Extractive Metallurgy Review, 7(3–4), 175–207. DOI: https://doi.org/10.1080/08827509108952671
23. Choi, J., Choi, S. Q., Park, K., Han, Y., & Kim, H. (2016). Flotation behaviour of malachite in mono- and di-valent salt solutions using sodium oleate as a collector. International Journal of Mineral Processing, 146, 38–45. DOI: https://doi.org/10.1016/j.minpro.2015.11.011
24. Lee, K., Archibald, D., McLean, J., & Reuter, M. A. (2009). Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. Minerals Engineering, 22(4), 395–401. DOI: https://doi.org/10.1016/j.mineng.2008.11.005
25. Bulatovic, S. M. (2010). Flotation of oxide copper and copper cobalt ores. In Handbook of Flotation Reagents: Chemistry, Theory and Practice (pp. 47–65). Amsterdam: Elsevier. DOI: https://doi.org/10.1016/B978-0-444-53082-0.00019-6
26. Marion, C., Jordens, A., Li, R. H., Rudolph, M., & Waters, K. E. (2017). An evaluation of hydroxamate collectors for malachite flotation. Separation and Purification Technology, 183, 258–269. DOI: https://doi.org/10.1016/j.seppur.2017.02.056
27. Han, G., Wen, S. M., Wang, H., & Feng, Q. C. (2021). Identification of copper-sulfide species on the cuprite surface and its role in sulfidization flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624, 126854. DOI: https://doi.org/10.1016/j.colsurfa.2021.126854
28. Gu, G., Zhu, R., & Chen, Z. (2019). Structural modification of cellulose to enhance the flotation efficiency of fine copper oxide ore. Physicochemical Problems of Mineral Processing, 55(1), 58–69.
29. Castro, S., Soto, H., Goldfarb, J., & Laskowski, J. (1974). Sulphidizing reactions in the flotation of oxidized copper minerals II: Role of the adsorption and oxidation of sodium sulphide in the flotation of chrysocolla and malachite. International Journal of Mineral Processing, 1(2), 151–161. DOI: https://doi.org/10.1016/0301-7516(74)90011-8
30. Deng, R. D., Hu, Y., Ku, J. G., Zuo, W. R., & Yang, Z. G. (2017). Adsorption of Fe(III) on smithsonite surfaces and implications for flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, 308–315. DOI: https://doi.org/10.1016/j.colsurfa.2017.09.004
31. Bekturganov, N., Katkeeva, G., Oskembekov, I., & Akubaeva, M. (2016). Sulfidization application during the processing of oxidized copper ores of Udokan deposit. Tsvetnye Metally, 22–27. https://doi.org/10.17580/tsm.2016.09.02 DOI: https://doi.org/10.17580/tsm.2016.09.02
32. Zhou, R., & Chander, S. (1993). Kinetics of sulfidization of malachite in hydrosulfide and tetrasulfide solutions. International Journal of Mineral Processing, 37(3–4), 257–272. DOI: https://doi.org/10.1016/0301-7516(93)90030-E
33. Park, K., Park, S., Choi, J., Kim, G., Tong, M. P., & Kim, H. (2016). Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector. Separation and Purification Technology, 168, 1–7. DOI: https://doi.org/10.1016/j.seppur.2016.04.053
34. Kongolo, K., Kipoka, M., Minanga, K., & Mpoyo, M. (2003). Improving the efficiency of oxide copper–cobalt ores flotation by combination of sulphidisers. Minerals Engineering, 16(10), 1023–1026. https://www.sciencedirect.com/science/article/abs/pii/S0892687503002632 DOI: https://doi.org/10.1016/S0892-6875(03)00263-2
35. Atrafi, A., Hodjatoleslami, H., Noaparast, M., Shafaei, Z., & Ghorbani, A. (2012). Implementation of flotation and gravity separation, to process Changarzeh sulfide-oxide lead ore. Journal of Mining and Environment, 3, 79–87.
36. Feng, Q. C., Zhao, W. J., Wen, S. M., & Cao, Q. B. (2017). Copper sulfide species formed on malachite surfaces in relation to flotation. Journal of Industrial and Engineering Chemistry, 48, 125–132. DOI: https://doi.org/10.1016/j.jiec.2016.12.029
37. Iwasaki, I., & Cooke, S. R. B. (1964). Decomposition mechanism of xanthate in acid solution as determined by a spectrophotometric method. Journal of Physical Chemistry, 68(7), 2031–2033. DOI: https://doi.org/10.1021/j100789a518
38. Han, G., Wen, S. M., Wang, H., & Feng, Q. C. (2021). Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant. International Journal of Mining Science and Technology, 31(6), 1117–1128. DOI: https://doi.org/10.1016/j.ijmst.2021.11.001
39. Qiu, X. Y., Li, S. P., Deng, H. B., & He, X. J. (2007). Study of heating surface sulfurized flotation dynamics of smithsonite. Nonferrous Metals Mineral Processing, 1, 24–26.
40. Jiang, D., Lan, J., Zhao, W., Zhang, Z., & Lan, Y. (2017). Activation of chrysocolla flotation by organic chelating agents. RSC Advances, 7(57), 35608–35612. DOI: https://doi.org/10.1039/C7RA05239A
41. Xu, X., & Liu, B. (1993). The properties of the flotation of chrysocolla using organic chelating reagents as activators. Journal of Kunming University of Science and Technology, 3, 36–41.
42. Ren, Z. W. (2003). Application of activator in flotation of oxide copper ore. Yunnan Metallurgy, 32(1), 24–25.
43. Cai, J. P., Su, C., Ma, Y. Y., Yu, X. C., Peng, R., Li, J. L., Zhang, X. L., Fang, J. J., Shen, P. L., & Liu, D. W. (2022). Role of ammonium sulfate in sulfurization flotation of azurite: Inhibiting the formation of copper sulfide colloid and its mechanism. International Journal of Mining Science and Technology, 32(3), 575–584. DOI: https://doi.org/10.1016/j.ijmst.2022.01.007
44. Feng, Q. C., Zhao, W. J., & Wen, S. M. (2018). Surface modification of malachite with ethanediamine and its effect on sulfidization flotation. Applied Surface Science, 436, 823–830. DOI: https://doi.org/10.1016/j.apsusc.2017.12.113
45. Shao, H. (1999). Progress in research on eliminating influences of slime on refractory copper oxide ore flotation. Yunnan Metallurgy, 3, 15–18.
46. Guang, X., Wen, S. M., Vang, X., & Feng, Q. (2021). Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide. Transactions of Nonferrous Metals Society of China, 31(11), 3564–3578. https://www.sciencedirect.com/science/article/pii/S1003632621657485 DOI: https://doi.org/10.1016/S1003-6326(21)65748-5
47. Yin, W. Z., Sun, Q. Y., Li, D., Tang, Y., Fu, Y., & Yao, J. (2019). Mechanism and application on sulphidizing flotation of copper oxide with combined collectors. Transactions of Nonferrous Metals Society of China, 29(1), 178–185. https://www.sciencedirect.com/science/article/abs/pii/S100363261864926X DOI: https://doi.org/10.1016/S1003-6326(18)64926-X
48. Seredkin, Y. G., Aksenov, A., & Senchenko, A. (2014). Searching for technology for complex gold-copper ore treatment. In IMPC 2014 - 27th International Mineral Processing Congress.
49. Novokshanova, V. N., Lebed, A. B., Vasilev, E. A., & Naboychenko, S. S. (2013). Research of a heap leaching of copper from the Volkovskoe deposit ore (pp. 28–31).
50. Zafar, K., & Kauser, M. (1988). Leaching of chalcopyrite by Thiobacillus thiooxidans and oxidized copper ore by Thiobacillus ferrooxidans isolated from local environments. World Journal of Microbiology and Biotechnology, 4, 447–453. https://doi.org/10.1007/BF00940171 DOI: https://doi.org/10.1007/BF00940171
51. Türk, F., & Arslanoğlu, H. (2024). Investigation of leaching conditions and leaching kinetics of oxidized copper ore malachite at atmospheric pressure using tartaric acid solution. Transactions of the Indian Institute of Metals, 77, 1–7. https://doi.org/10.1007/s12666-024-03358-0 DOI: https://doi.org/10.1007/s12666-024-03358-0
52. Faxin, X., Zhihua, L., Yu, P., Xuwei, L., Yaoyu, Y., Shuchen, S., & Ganfeng, T. (2024). Leaching kinetics of Cu from low-grade oxidized copper ore with high alkalinity gangue using EDTA·2Na solution. JOM. https://doi.org/10.1007/s11837-024-06649-5 DOI: https://doi.org/10.1007/s11837-024-06649-5
53. Gorlova, O., Medyanik, N., Yun, A., & Sinyanskaya, O. (2018). Combined processing of dumped complex copper ores of the Taskora deposit: Process development and field trials. Tsvetnye Metally, 14–20. https://doi.org/10.17580/tsm.2018.12.02 DOI: https://doi.org/10.17580/tsm.2018.12.02
54. Konareva, T., & Kirilchuk, M. (2020). Research of combined reagent schemes of activation leaching of gold from oxidized ores of the Malmyzh field. E3S Web of Conferences, 192, 02020. https://doi.org/10.1051/e3sconf/202019202020 DOI: https://doi.org/10.1051/e3sconf/202019202020
55. Tomina, V., Khrennikov, A., Lebed, A., & Naboichenko, S. (2010). Heap leaching of copper from the ores of Volkovskoe deposit. Russian Journal of Non-Ferrous Metals, 51, 263–267. https://doi.org/10.3103/S1067821210040012 DOI: https://doi.org/10.3103/S1067821210040012