THE IMPORTANCE OF THE MINERAL COMPOSITION OF OXIDIZED COPPER ORE IN THE SELECTION OF PROCESSING TECHNOLOGY

Main Article Content

Elchieva. M.D.
Kholikulov, D.B.
Boltaev, O.N.
Niyazmetov, B.E.

Abstract

The growing demand for copper and the depletion of easily processable sulfide copper ore reserves necessitate the processing of oxidized, compositionally mixed, and off-balance copper ores to extract valuable components. However, the complex mineralogical composition of oxidized copper ores and their hydrophilic properties present challenges in processing. This article analyzes the physicochemical properties of copper minerals contained in oxidized ores, their importance in selecting appropriate processing technologies, potential reagents for improving flotation performance, and hydrometallurgical processing methods.

Downloads

Download data is not yet available.

Article Details

Section

Mining, Metallurgy, and Manufacturing Industry

How to Cite

Elchieva, M. D., Kholikulov, D. B., Boltaev, O. N., & Niyazmetov, B. E. (2025). THE IMPORTANCE OF THE MINERAL COMPOSITION OF OXIDIZED COPPER ORE IN THE SELECTION OF PROCESSING TECHNOLOGY. Digital Technologies in Industry, 3(3), 34-41. https://doi.org/10.70769/3030-3214.SRT.3.3.2025.11

References

1. International Copper Study Group. (2024). The world copper factbook 2024 (pp. 5–6).

2. London Metal Exchange. (n.d.). LME Copper. Retrieved from https://www.lme.com/en/Metals/Non-ferrous/LME-Copper#Summary

3. Yagudin, R. A., Yagudina, Yu. R., & Emelyanenko, E. A. (2014). Mis-kolchedan rudalarini qayta ishlashning texnologik yechimlari. Gornyi Zhurnal, (7), 30–33. https://www.rudmet.ru/journal/1330/article/22746/

4. Ryl’nikova, M. V., Emelyanenko, E. A., Gorbatova, E. A., & Yagudina, Yu. R. (2016). Uraldagi mis-kolchedan konlari rudalarini qayta ishlash texnologiyasini takomillashtirish. Gornyi Zhurnal, (12). https://doi.org/10.17580/gzh.2016.12.14 DOI: https://doi.org/10.17580/gzh.2016.12.14

5. Boduen, A. Ya. (2023). Past navli va sifatsiz mis konsentratlarini qayta ishlashning gidrometallurgik usullari. Gornyi Zhurnal, (10). https://doi.org/10.17580/gzh.2023.10.05 DOI: https://doi.org/10.17580/gzh.2023.10.05

6. Gu, G., Zhu, R., & Chen, Z. (2019). Structural modification of cellulose to enhance the flotation efficiency of fine copper oxide ore. Physicochemical Problems of Mineral Processing, 55(1), 58–69.

7. Emmanuel, B., Ajayi, J. A., & Makhatha, E. (2019). Investigation of copper recovery rate from copper oxide ore occurring as coarse grains locked in a porphyritic fine grain alumina and silica. Energy Procedia, 157, 972–976. DOI: https://doi.org/10.1016/j.egypro.2018.11.264

8. Mitrofanov, S. I., Meshaninova, V. I., Kurochkina, A. V., Maiorov, A. D., & Shcherbakov, V. A. (1984). Kombinirovannye protsessy pererabotki rud tsvetnykh metallov. Moskva: Nedra.

9. Sanakulov, K. S. (2009). Perspektivy pererabotki okislennykh mednykh rud mestorozhdeniya Kal’makyr. Gornyi Vestnik Uzbekistana, (3), 47–49.

10. Elchiyeva, M. D., Xoliqulov, D. B., & Boltayev, O. N. (2024). “Olmaliq KMK” AJ sharoitida oksidlangan mis rudalarini qayta ishlash imkoniyatlari. International Journal of Advanced Technology and Natural Sciences. https://doi.org/10.24412/2181-144X-2024-1-80-87

11. Mao, Y. B., Deng, J. S., Wen, S. M., & Fang, J. J. (2015). Reaction kinetics of malachite in ammonium carbamate solution. Chemical Papers, 69(9), 1187–1192. DOI: https://doi.org/10.1515/chempap-2015-0128

12. Horlick, J. M., Cooper, W. C., & Clark, A. H. (1981). Aspects of the mineralogy and hydrometallurgy of chrysocolla, with special reference to the Cuajone, Peru, ores. International Journal of Mineral Processing, 8(1), 49–59. DOI: https://doi.org/10.1016/0301-7516(81)90006-5

13. Habbache, N., Alane, N., Djerad, S., & Tifouti, L. (2009). Leaching of copper oxide with different acid solutions. Chemical Engineering Journal, 152(2–3), 503–508. DOI: https://doi.org/10.1016/j.cej.2009.05.020

14. Zhang, Q., Wen, S. M., Feng, Q. C., & Wang, H. (2022). Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation. International Journal of Minerals, Metallurgy and Materials, 29(6), 1150–1160. DOI: https://doi.org/10.1007/s12613-021-2379-y

15. Baranov, V. F. (2020). Sulfidli va aralash tarkibli mis rudalarini qayta ishlovchi xorijiy boyitish fabrikalarining ish tajribasini ko‘rib chiqish. Obogashchenie Rud, (3). https://doi.org/10.17580/or.2020.03.08 DOI: https://doi.org/10.17580/or.2020.03.08

16. Kongolo, K., Kipoka, M., Minanga, K., & Mpoyo, M. (2003). Improving the efficiency of oxide copper-cobalt ores flotation by combination of sulphidisers. Minerals Engineering, 16(10), 1023–1026.

17. Feng, Q., Yang, W., Wen, S., Wang, H., Zhao, W., & Han, G. (2022). Flotation of copper oxide minerals: A review. International Journal of Mining Science and Technology, 32(6), 1351–1364. https://doi.org/10.1016/j.ijmst.2022.08.008 DOI: https://doi.org/10.1016/j.ijmst.2022.09.011

18. Gu, G., Zhu, R., & Chen, Z. (2019). Structural modification of cellulose to enhance the flotation efficiency of fine copper oxide ore. Physicochemical Problems of Mineral Processing, 55(1), 58–69.

19. Jiang, D., Lan, J., Zhao, W., Zhang, Z., & Lan, Y. (2017). Activation of chrysocolla flotation by organic chelating agents. RSC Advances, 7(57), 35608–35612. DOI: https://doi.org/10.1039/C7RA05239A

20. Kongolo, K., Kipoka, M., Minanga, K., & Mpoyo, M. (2003). Improving the efficiency of oxide copper-cobalt ores flotation by combination of sulphidisers. Minerals Engineering, 16(10), 1023–1026. DOI: https://doi.org/10.1016/S0892-6875(03)00263-2

21. Yang, X. L., Liu, S., Liu, G. Y., & Zhong, H. (2017). A DFT study on the structure–reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors. Journal of Industrial and Engineering Chemistry, 46, 404–415. DOI: https://doi.org/10.1016/j.jiec.2016.11.010

22. Deng, T., & Chen, J. Y. (1991). Treatment of oxidized copper ores with emphasis on refractory ores. Mineral Processing and Extractive Metallurgy Review, 7(3–4), 175–207. DOI: https://doi.org/10.1080/08827509108952671

23. Choi, J., Choi, S. Q., Park, K., Han, Y., & Kim, H. (2016). Flotation behaviour of malachite in mono- and di-valent salt solutions using sodium oleate as a collector. International Journal of Mineral Processing, 146, 38–45. DOI: https://doi.org/10.1016/j.minpro.2015.11.011

24. Lee, K., Archibald, D., McLean, J., & Reuter, M. A. (2009). Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. Minerals Engineering, 22(4), 395–401. DOI: https://doi.org/10.1016/j.mineng.2008.11.005

25. Bulatovic, S. M. (2010). Flotation of oxide copper and copper cobalt ores. In Handbook of Flotation Reagents: Chemistry, Theory and Practice (pp. 47–65). Amsterdam: Elsevier. DOI: https://doi.org/10.1016/B978-0-444-53082-0.00019-6

26. Marion, C., Jordens, A., Li, R. H., Rudolph, M., & Waters, K. E. (2017). An evaluation of hydroxamate collectors for malachite flotation. Separation and Purification Technology, 183, 258–269. DOI: https://doi.org/10.1016/j.seppur.2017.02.056

27. Han, G., Wen, S. M., Wang, H., & Feng, Q. C. (2021). Identification of copper-sulfide species on the cuprite surface and its role in sulfidization flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624, 126854. DOI: https://doi.org/10.1016/j.colsurfa.2021.126854

28. Gu, G., Zhu, R., & Chen, Z. (2019). Structural modification of cellulose to enhance the flotation efficiency of fine copper oxide ore. Physicochemical Problems of Mineral Processing, 55(1), 58–69.

29. Castro, S., Soto, H., Goldfarb, J., & Laskowski, J. (1974). Sulphidizing reactions in the flotation of oxidized copper minerals II: Role of the adsorption and oxidation of sodium sulphide in the flotation of chrysocolla and malachite. International Journal of Mineral Processing, 1(2), 151–161. DOI: https://doi.org/10.1016/0301-7516(74)90011-8

30. Deng, R. D., Hu, Y., Ku, J. G., Zuo, W. R., & Yang, Z. G. (2017). Adsorption of Fe(III) on smithsonite surfaces and implications for flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, 308–315. DOI: https://doi.org/10.1016/j.colsurfa.2017.09.004

31. Bekturganov, N., Katkeeva, G., Oskembekov, I., & Akubaeva, M. (2016). Sulfidization application during the processing of oxidized copper ores of Udokan deposit. Tsvetnye Metally, 22–27. https://doi.org/10.17580/tsm.2016.09.02 DOI: https://doi.org/10.17580/tsm.2016.09.02

32. Zhou, R., & Chander, S. (1993). Kinetics of sulfidization of malachite in hydrosulfide and tetrasulfide solutions. International Journal of Mineral Processing, 37(3–4), 257–272. DOI: https://doi.org/10.1016/0301-7516(93)90030-E

33. Park, K., Park, S., Choi, J., Kim, G., Tong, M. P., & Kim, H. (2016). Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector. Separation and Purification Technology, 168, 1–7. DOI: https://doi.org/10.1016/j.seppur.2016.04.053

34. Kongolo, K., Kipoka, M., Minanga, K., & Mpoyo, M. (2003). Improving the efficiency of oxide copper–cobalt ores flotation by combination of sulphidisers. Minerals Engineering, 16(10), 1023–1026. https://www.sciencedirect.com/science/article/abs/pii/S0892687503002632 DOI: https://doi.org/10.1016/S0892-6875(03)00263-2

35. Atrafi, A., Hodjatoleslami, H., Noaparast, M., Shafaei, Z., & Ghorbani, A. (2012). Implementation of flotation and gravity separation, to process Changarzeh sulfide-oxide lead ore. Journal of Mining and Environment, 3, 79–87.

36. Feng, Q. C., Zhao, W. J., Wen, S. M., & Cao, Q. B. (2017). Copper sulfide species formed on malachite surfaces in relation to flotation. Journal of Industrial and Engineering Chemistry, 48, 125–132. DOI: https://doi.org/10.1016/j.jiec.2016.12.029

37. Iwasaki, I., & Cooke, S. R. B. (1964). Decomposition mechanism of xanthate in acid solution as determined by a spectrophotometric method. Journal of Physical Chemistry, 68(7), 2031–2033. DOI: https://doi.org/10.1021/j100789a518

38. Han, G., Wen, S. M., Wang, H., & Feng, Q. C. (2021). Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant. International Journal of Mining Science and Technology, 31(6), 1117–1128. DOI: https://doi.org/10.1016/j.ijmst.2021.11.001

39. Qiu, X. Y., Li, S. P., Deng, H. B., & He, X. J. (2007). Study of heating surface sulfurized flotation dynamics of smithsonite. Nonferrous Metals Mineral Processing, 1, 24–26.

40. Jiang, D., Lan, J., Zhao, W., Zhang, Z., & Lan, Y. (2017). Activation of chrysocolla flotation by organic chelating agents. RSC Advances, 7(57), 35608–35612. DOI: https://doi.org/10.1039/C7RA05239A

41. Xu, X., & Liu, B. (1993). The properties of the flotation of chrysocolla using organic chelating reagents as activators. Journal of Kunming University of Science and Technology, 3, 36–41.

42. Ren, Z. W. (2003). Application of activator in flotation of oxide copper ore. Yunnan Metallurgy, 32(1), 24–25.

43. Cai, J. P., Su, C., Ma, Y. Y., Yu, X. C., Peng, R., Li, J. L., Zhang, X. L., Fang, J. J., Shen, P. L., & Liu, D. W. (2022). Role of ammonium sulfate in sulfurization flotation of azurite: Inhibiting the formation of copper sulfide colloid and its mechanism. International Journal of Mining Science and Technology, 32(3), 575–584. DOI: https://doi.org/10.1016/j.ijmst.2022.01.007

44. Feng, Q. C., Zhao, W. J., & Wen, S. M. (2018). Surface modification of malachite with ethanediamine and its effect on sulfidization flotation. Applied Surface Science, 436, 823–830. DOI: https://doi.org/10.1016/j.apsusc.2017.12.113

45. Shao, H. (1999). Progress in research on eliminating influences of slime on refractory copper oxide ore flotation. Yunnan Metallurgy, 3, 15–18.

46. Guang, X., Wen, S. M., Vang, X., & Feng, Q. (2021). Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide. Transactions of Nonferrous Metals Society of China, 31(11), 3564–3578. https://www.sciencedirect.com/science/article/pii/S1003632621657485 DOI: https://doi.org/10.1016/S1003-6326(21)65748-5

47. Yin, W. Z., Sun, Q. Y., Li, D., Tang, Y., Fu, Y., & Yao, J. (2019). Mechanism and application on sulphidizing flotation of copper oxide with combined collectors. Transactions of Nonferrous Metals Society of China, 29(1), 178–185. https://www.sciencedirect.com/science/article/abs/pii/S100363261864926X DOI: https://doi.org/10.1016/S1003-6326(18)64926-X

48. Seredkin, Y. G., Aksenov, A., & Senchenko, A. (2014). Searching for technology for complex gold-copper ore treatment. In IMPC 2014 - 27th International Mineral Processing Congress.

49. Novokshanova, V. N., Lebed, A. B., Vasilev, E. A., & Naboychenko, S. S. (2013). Research of a heap leaching of copper from the Volkovskoe deposit ore (pp. 28–31).

50. Zafar, K., & Kauser, M. (1988). Leaching of chalcopyrite by Thiobacillus thiooxidans and oxidized copper ore by Thiobacillus ferrooxidans isolated from local environments. World Journal of Microbiology and Biotechnology, 4, 447–453. https://doi.org/10.1007/BF00940171 DOI: https://doi.org/10.1007/BF00940171

51. Türk, F., & Arslanoğlu, H. (2024). Investigation of leaching conditions and leaching kinetics of oxidized copper ore malachite at atmospheric pressure using tartaric acid solution. Transactions of the Indian Institute of Metals, 77, 1–7. https://doi.org/10.1007/s12666-024-03358-0 DOI: https://doi.org/10.1007/s12666-024-03358-0

52. Faxin, X., Zhihua, L., Yu, P., Xuwei, L., Yaoyu, Y., Shuchen, S., & Ganfeng, T. (2024). Leaching kinetics of Cu from low-grade oxidized copper ore with high alkalinity gangue using EDTA·2Na solution. JOM. https://doi.org/10.1007/s11837-024-06649-5 DOI: https://doi.org/10.1007/s11837-024-06649-5

53. Gorlova, O., Medyanik, N., Yun, A., & Sinyanskaya, O. (2018). Combined processing of dumped complex copper ores of the Taskora deposit: Process development and field trials. Tsvetnye Metally, 14–20. https://doi.org/10.17580/tsm.2018.12.02 DOI: https://doi.org/10.17580/tsm.2018.12.02

54. Konareva, T., & Kirilchuk, M. (2020). Research of combined reagent schemes of activation leaching of gold from oxidized ores of the Malmyzh field. E3S Web of Conferences, 192, 02020. https://doi.org/10.1051/e3sconf/202019202020 DOI: https://doi.org/10.1051/e3sconf/202019202020

55. Tomina, V., Khrennikov, A., Lebed, A., & Naboichenko, S. (2010). Heap leaching of copper from the ores of Volkovskoe deposit. Russian Journal of Non-Ferrous Metals, 51, 263–267. https://doi.org/10.3103/S1067821210040012 DOI: https://doi.org/10.3103/S1067821210040012