MODERN METHODS OF MATHEMATICAL MODELING OF PASSIVE SOLAR HEATING SYSTEMS AND THEIR PRACTICAL IMPLEMENTATION
Main Article Content
Abstract
In this work, modern approaches to mathematical modeling of passive solar heating systems using energy-saving glass blocks are analyzed. Empirical, analytical, and numerical methods (including the finite element method and multilayer heat transfer modeling) are considered, taking into account climatic features, which will allow improving the structure and operating modes of passive solar heating systems. Special attention is paid to the introduction of innovative, energy-active glass blocks (multilayer glass packages filled with inert gas, low-emission coatings, phase transition materials) in order to increase the energy efficiency of the building. As a result of the analysis, recommendations were developed for the integration of passive solar heating systems into energy-efficient projects, and the main factors for adapting international experience to regional climatic conditions were identified. The obtained results confirm the significant potential of passive solar heating systems in reducing energy consumption and increasing the environmental sustainability of the construction industry.
Downloads
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
Public License Terms
(For Open Journal Systems (OJS))
-
Copyright:
The copyright of the published article remains with the author(s). However, after publication, the article is distributed on the OJS platform under the Creative Commons (CC BY) license. -
License Type:
This article is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. This means users can utilize the article under the following conditions:- Copy and distribute: The text of the article or its parts can be freely distributed.
- Quote and analyze: Parts of the article can be used for quoting and analysis.
- Free use: The article can be freely used for research and educational purposes.
- Attribution: Users must provide proper attribution and reference to the original source.
-
Commercial use:
The article can be used for commercial purposes, provided that authorship and source are properly cited. -
Document modification:
The text or content of the article can be modified or adapted, as long as it does not harm the authorship. -
Liability disclaimer:
The author(s) are responsible for the accuracy of the information contained in the article. The editorial team of the platform is not liable for any damages resulting from the use of this information. -
Public usage obligations:
The content of the article must be used only in accordance with legal and ethical standards. Unauthorized use is strictly prohibited.
Note:
These license terms are designed to ensure transparency and openness in material usage. By accepting these terms, you agree to the adaptation and distribution of the article content under the terms of the Creative Commons license.
Link: Creative Commons Attribution 4.0 International (CC BY 4.0)
How to Cite
References
1. R.R. Avezov, N.R. Avezova, N.A. Matchanov, Sh.I. Suleimanov, R.D. Abdukadirova, History and State of Solar Engineering in Uzbekistan// Applied Solar Energy, 2012, Vol. 48, No. 1, pp. 14–19. DOI: https://doi.org/10.3103/S0003701X12010033
2. Авезов Р.Р., Орлов А.Ю. Солнечные системы отопления и горячего водоснабжения. Ташкент: Фан, 1988. 288 с.
3. Janssen, H., Blocken, B., & Carmeliet, J. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation. International Journal of Heat and Mass Transfer, 2007.50, 1128-1140.https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.048. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.048
4. Gerlich, V. Modelling of Heat Transfer in Buildings., 2011 244-248. https://doi.org/10.7148/2011-0244-0248. orientation. Applied Thermal Engineering, 2017. 112, 15-24. https://doi.org/10.1016/j.applthermaleng.2016.10.068. DOI: https://doi.org/10.1016/j.applthermaleng.2016.10.068
5. Basok, B.I.; Nakorchevskii, A.I.; Goncharuk, S.M.; Kuzhel, L.N. Experimental Investigations of Heat Transfer Through Multiple Glass Units with Account for the Action of Exterior Factors. J. Eng. Phys. Thermophys. 2017, 90, 88–94. DOI: https://doi.org/10.1007/s10891-017-1542-9
6. Брызгалин Владислав Викторович, Соловьев Алексей Кириллович Использование пассивных систем солнечного отопления как элемента пассивного дома // Вестник МГСУ. 2018. №4 (115). URL: https://cyberleninka.ru/article/n/ispolzovanie-passivnyh-sistem-solnechnogo-otopleniya-kak-elementa-passivnogo-doma.
7. Авезов P.P., Бабакулов К.Б. Метод теплотехнического расчета пассивной системы солнечного обогрева (нестационарный режим). -Гелиотехника, 1982, № 5, с.11-18
8. Krivoshein, Y. O., Tolstykh, A. V., Tsvetkov, N. A., & Khutornoy, A. N. Mathematical model for calculating solar radiation on horizontal and inclined surfaces for the conditions of Yakutsk. IOP Conference Series: Earth and Environmental Science, 2020, 408, 012002. doi:10.1088/1755-1315/408/1/012002 DOI: https://doi.org/10.1088/1755-1315/408/1/012002
9. Misiopecki, C., Bouquin, M., Gustavsen, A., & Jelle, B. P. Thermal modeling and investigation of the most energy-efficient window position. Energy and Buildings, 2018, 158, 1079–1086. doi: 10.1016/j.enbuild.2017.10 DOI: https://doi.org/10.1016/j.enbuild.2017.10.021
10. Pilipenko, A., & Petrov, S. Computer Simulation and Modelling System of Non-Stationary Heat Exchange Processes. MATEC Web of Conferences, 2018, 155, 01036. doi:10.1051/matecconf/2018155 DOI: https://doi.org/10.1051/matecconf/201815501036
11. Tian, Z.; Zhang, X.; Jin, X.; Zhou, X.; Shi, X. Towards adoption of building energy simulation and optimization for passive building design: A survey and a review. Energy Build. 2018, 158, 1306–1316. DOI: https://doi.org/10.1016/j.enbuild.2017.11.022
12. Nguyen A, Reiter S, Rigo P.;1; A review on simulation-based optimization methods applied to building performance analysis. 2014:1043-58. DOI: https://doi.org/10.1016/j.apenergy.2013.08.061
13. Crawley, Drury B., et al.;1; «EnergyPlus: creating a new-generation building energy simulation program." Energy and buildings 33.4, 2001. 319-331. DOI: https://doi.org/10.1016/S0378-7788(00)00114-6
14. Hirsch, James “eQUEST”. DOE2. com. http://www. doe2. com/equest, (Accessed 26.05.2016).
15. DesignBuilder. https://www.designbuilder.co.uk. /software/product-overview (Accessed 26.05.2016).
16. Гражданкин А.А., Иванченко В.Т., Письменский А.В. Математическое моделирование теплопередачи через ограждающую конструкцию // Вестник БГТУ имени В. Г. 2020. №6.
17. Зима А. Г. Характеристики окна, влияющие на повышение его теплоизоляционных свойств // Инженерно-строительный вестник Прикаспия. 2020. №3 (33).
18. Cuce E. Riffat S.B. A state-of-the-art review on innovative glazing technologies. Renew. Sustain. Energy Rev. 2015, 41, 695–714 DOI: https://doi.org/10.1016/j.rser.2014.08.084
19. Подковырина К.А., Подковырин В.С. Светопрозрачные ограждающие конструкции (методы снижения тепловых потерь и мировой опыт применения) // Архитектура и дизайн. 2018. № 1. С. 46-51. doi: 10.7256/2585-7789.2018.1.27981 DOI: https://doi.org/10.7256/2585-7789.2018.1.27981
20. Н.Р. Авезова, A.М. Мирзабаев, К.А. Самиев, Н.Н. Далмурадова, М.Х Дехконова. Краткий обзор инженерных подходов по разработке энергоактивых оконных блоков для пассивных зданий// «Проблемы информатики и энергетики» 2024/3 c-228-248
21. Павленко А.М., Садко К. Оценка численных методов прогнозирования энергоэффективности окон// Энергии. 2023; 16(3):1425. https://doi.org/10.3390/en16031425 DOI: https://doi.org/10.3390/en16031425
22. Jean-Michel Dussault, Louis Gosselin, Tigran Galstian. Assessment of building energy efficiency with smart window glazing curtain walls//International Workshop smart materials, structures & NDT in aerospace Conference NDT in Canada 2011. 2 - 4
23. Земцов Виктор Андреевич, Гагарина Елена Владимировна Расчетно-экспериментальный метод определения общего коэффициента пропускания света оконными блоками // Academia. Архитектура и строительство. 2010. №3.
24. Nourozi B, Ploskić A, Chen Y, Ning-Wei Chiu J, Wang Q, Heat transfer model for energy-active windows – An evaluation of efficient reuse of waste heat in buildings, Renewable Energy 2020, doi: https://doi.org/10.1016/j.renene.2020.10.043 DOI: https://doi.org/10.1016/j.renene.2020.10.043
25. Basok, B. I., Davydenko, B. V., Isaev, S. A., Goncharuk, S. M., & Kuzhel’, L. N. Numerical Modeling of Heat Transfer Through a Triple-Pane Window. Journal of Engineering Physics and Thermophysics-2016, 89(5), 1277–1283. doi:10.1007/s10891-016-1492-7 DOI: https://doi.org/10.1007/s10891-016-1492-7
26. Kamal A.R. Ismail, Taynara G.S. Lago, Fatima A.M. Lino, Mário Ventura Mondlane, Mavd P.R. Teles, Experimental investigation on ventilated window with reflective film and development of correlations// Solar Energy, Volume 230, Pages 421-434, 2021. DOI: https://doi.org/10.1016/j.solener.2021.10.061
27. Avezov, R.R. Temperature field and heat transfer through partly ray-absorbing translucent enclosure of insolation passive systems for solar heating// Geliotekhnika, (3), pp. 54-57. 2003
28. R. R. Avezov, The influence of heat exchange conditions on the temperature regimes and heat transfer of a partially radiation-absorbing layer of complex transparent enclosures in passive solar heating systems// Geliotekhnika, no. 4, pp. 32-38, 2004.
29. R. R. Avezov and K. A. Samiev, Methodology for calculating the optical characteristics of double- and triple-layer transparent enclosures in passive solar heating// Geliotekhnika, no. 3, pp. 71-78, 2006.
30. Avezova, N.R., Avezov, R.R., Samiev, K.A. Modeling the stationary thermal conditions of a premises heated by a passive insolation system containing a three-layer translucent shield with a partially ray-absorbing film on its inner surface. Applied Solar Energy 2014 50 (1), pp. 30-34. DOI: https://doi.org/10.3103/S0003701X14010022
31. Avezova, N.R., Avezov, R.R., Rashidov, Y.K., Kasimov, F.S. The fuel-replacement factor of insolation passive solar-heating systems with a three-layer translucent shield with a partially ray absorbing transforming film on the inside Applied Solar Energy 2014, 50 (4), pp. 278-281 DOI: https://doi.org/10.3103/S0003701X14040057
32. К. А. Самиев. “Повышение эффективности сложных светопрозрачных ограждений с частично лучепоглощающим слоем инсоляционных пассивных систем солнечного отопления” автореферат диссертационная работа. Ташкент – 2010. С-55.
33. Avezova, N.R., Avezov, R.R., Rashidov, Y.K., Samiev, K.A. Model-based analysis of nonstationary thermal mode in premises with an insolation passive heating system with a three-layer translucent shield Applied Solar Energy 2014. 50 (3), pp. 184-187. DOI: https://doi.org/10.3103/S0003701X14030025
34. Avezov, R.R., Samiev, K.A. Effect of the placement of a partially radiation-absorbing layer on the optical and thermotechnical characteristics of a three-layer translucent screen of passive insolation solar-heating systems// Applied Solar Energy 2006. 42 (4), pp. 11-14.
35. Самиев К.А. Математическое моделирование теплового режима инсоляционного пассивного система солнечного отопления с трехслойными вентилируемыми светопрозрачными ограждениями// Гелиотехника. – 2009 №4. С.121-126.
36. Avezov, R.R., Samiev, K.A. Technique for calculation of optical characteristics of two- And three-layer light transmissive screens in insolation passive solar heating systems Applied Solar Energy 2006, 42 (3), pp. 45-49.
37. Самиев К.А. Тепловая эффективность пассивных систем солнечного отопления// авторереферат докторская диссертационная работа. Ташкент – 2023. с.56
38. N.R. Avezova, E.Yu Rakhimov, NN Dalmuradova, MB Shermatova. Adjustments to the indicators of the heating and cooling degree-days for regions of the Republic of Uzbekistan// 2-nd International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2021), PP. 278-288. DOI: https://doi.org/10.1088/1755-1315/939/1/012017
39. Murat Kenisarin, Kamola Kenisarina. Energy saving potential in the residential sector of Uzbekistan. // Energy 32 (2007) 1319–1325. DOI: https://doi.org/10.1016/j.energy.2006.09.014
40. КМК 2.01.04-97. Пособие по проектированию новых энергосберегающих решений по строительной теплотехнике. Строительная теплотехника. 01.01.2012 г.
41. Н.Р. Авезова, Э.Ю. Рахимов, А.У. Вохидов, М.Х. Дехконова. Методика расчета тепловых потерь через трехслойные светопрозрачные ограждения зданий// международной научно-практической конференции “Подготовка кадров по солнечной энергетике: технологии, методы и инструменты” 20 сентября 2024 года, г. Фергана
42. ERA5-Land hourly data from 1950 to present. https://cds-beta.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview
43. Дехконова М.Х.“Программа для определения значения тепловых потерь в трехслойных энергоактивных оконных блоков для пассивных зданий”// ДГУ № 40083.14.06.2024
44. Nilufar Avezova, Akrom Mirzabaev, Ergashali Rakhimov, Nargiza Dalmuradova, Makhliyo Dekhkonova. Passive project strategy: Givoni diagram//Journal of Construction and Engineering Technology JCET: volume 2, issue 2, 2024.
45. ШНК 2.08.08-22. Пассивные здания: жилые. https://mc.uz/uploads/mcuz_999401255275.pdf